Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.309
Filtrar
1.
PLoS One ; 19(4): e0300630, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578754

RESUMO

The destructive impact of fungi in agriculture and animal and human health, coincident with increases in antifungal resistance, underscores the need for new and alternative drug targets to counteract these trends. Cellular metabolism relies on many intermediates with intrinsic toxicity and promiscuous enzymatic activity generates others. Fuller knowledge of these toxic entities and their generation may offer opportunities of antifungal development. From this perspective our observation of media-conditional lethal metabolism in respiratory mutants of the opportunistic fungal pathogen Candida albicans was of interest. C. albicans mutants defective in NADH:ubiquinone oxidoreductase (Complex I of the electron transport chain) exhibit normal growth in synthetic complete medium. In YPD medium, however, the mutants grow normally until early stationary phase whereupon a dramatic loss of viability occurs. Upwards of 90% of cells die over the subsequent four to six hours with a loss of membrane integrity. The extent of cell death was proportional to the amount of BactoPeptone, and to a lesser extent, the amount of yeast extract. YPD medium conditioned by growth of the mutant was toxic to wild-type cells indicating mutant metabolism established a toxic milieu in the media. Conditioned media contained a volatile component that contributed to toxicity, but only in the presence of a component of BactoPeptone. Fractionation experiments revealed purine nucleosides or bases as the synergistic component. GC-mass spectrometry analysis revealed acetal (1,1-diethoxyethane) as the active volatile. This previously unreported and lethal synergistic interaction of acetal and purines suggests a hitherto unrecognized toxic metabolism potentially exploitable in the search for antifungal targets.


Assuntos
Antifúngicos , Candida albicans , Animais , Humanos , Candida albicans/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Acetais/metabolismo , Complexo I de Transporte de Elétrons/metabolismo
2.
Virulence ; 15(1): 2333367, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38515333

RESUMO

Our immune system possesses sophisticated mechanisms to cope with invading microorganisms, while pathogens evolve strategies to deal with threats imposed by host immunity. Human plasma protein α1-antitrypsin (AAT) exhibits pleiotropic immune-modulating properties by both preventing immunopathology and improving antimicrobial host defence. Genetic associations suggested a role for AAT in candidemia, the most frequent fungal blood stream infection in intensive care units, yet little is known about how AAT influences interactions between Candida albicans and the immune system. Here, we show that AAT differentially impacts fungal killing by innate phagocytes. We observed that AAT induces fungal transcriptional reprogramming, associated with cell wall remodelling and downregulation of filamentation repressors. At low concentrations, the cell-wall remodelling induced by AAT increased immunogenic ß-glucan exposure and consequently improved fungal clearance by monocytes. Contrastingly, higher AAT concentrations led to excessive C. albicans filamentation and thus promoted fungal immune escape from monocytes and macrophages. This underscores that fungal adaptations to the host protein AAT can differentially define the outcome of encounters with innate immune cells, either contributing to improved immune recognition or fungal immune escape.


Assuntos
Candida albicans , beta-Glucanas , Humanos , Candida albicans/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Monócitos/microbiologia , beta-Glucanas/metabolismo
3.
J Med Chem ; 67(7): 5783-5799, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38526960

RESUMO

Neutrophil-mediated immunotherapy is a promising strategy for treating Candida albicans infection due to its potential in dealing with drug-resistant events. Our previous study found that ACT001 exhibited good antifungal immunotherapeutic activity by inhibiting PD-L1 expression in neutrophils, but its strong cytotoxicity and high BBB permeability hindered its antifungal application. To address these deficiencies, a series of novel sulfide derivatives were designed and synthesized based on a slow-release prodrug strategy. Among these derivatives, compound 16 exhibited stronger inhibition of PD-L1 expression, less cytotoxicity to neutrophils, and lower BBB permeability than ACT001. Compound 16 also significantly enhanced neutrophil-mediated antifungal immunity in C. albicans infected mice, with acceptable pharmacokinetic properties and good oral safety. Moreover, pharmacological mechanism studies demonstrated that ACT001 and compound 16 reduced PD-L1 expression in neutrophils by directly targeting STAT3. Briefly, this study provided a novel prototype compound 16 which exhibited great potential in neutrophil-mediated antifungal immunotherapy.


Assuntos
Antifúngicos , Furanos , Neutrófilos , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Neutrófilos/metabolismo , Antígeno B7-H1 , Reposicionamento de Medicamentos , Candida albicans/metabolismo
4.
Nature ; 627(8004): 620-627, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448595

RESUMO

The fungus Candida albicans frequently colonizes the human gastrointestinal tract, from which it can disseminate to cause systemic disease. This polymorphic species can transition between growing as single-celled yeast and as multicellular hyphae to adapt to its environment. The current dogma of C. albicans commensalism is that the yeast form is optimal for gut colonization, whereas hyphal cells are detrimental to colonization but critical for virulence1-3. Here, we reveal that this paradigm does not apply to multi-kingdom communities in which a complex interplay between fungal morphology and bacteria dictates C. albicans fitness. Thus, whereas yeast-locked cells outcompete wild-type cells when gut bacteria are absent or depleted by antibiotics, hyphae-competent wild-type cells outcompete yeast-locked cells in hosts with replete bacterial populations. This increased fitness of wild-type cells involves the production of hyphal-specific factors including the toxin candidalysin4,5, which promotes the establishment of colonization. At later time points, adaptive immunity is engaged, and intestinal immunoglobulin A preferentially selects against hyphal cells1,6. Hyphal morphotypes are thus under both positive and negative selective pressures in the gut. Our study further shows that candidalysin has a direct inhibitory effect on bacterial species, including limiting their metabolic output. We therefore propose that C. albicans has evolved hyphal-specific factors, including candidalysin, to better compete with bacterial species in the intestinal niche.


Assuntos
Candida albicans , Proteínas Fúngicas , Microbioma Gastrointestinal , Hifas , Intestinos , Micotoxinas , Simbiose , Animais , Feminino , Humanos , Masculino , Camundongos , Bactérias/crescimento & desenvolvimento , Bactérias/imunologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/imunologia , Candida albicans/metabolismo , Candida albicans/patogenicidade , Proteínas Fúngicas/metabolismo , Microbioma Gastrointestinal/imunologia , Hifas/crescimento & desenvolvimento , Hifas/imunologia , Hifas/metabolismo , Imunoglobulina A/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Micotoxinas/metabolismo , Virulência
5.
Microbiol Spectr ; 12(4): e0404223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38442003

RESUMO

Azole drugs are the main therapeutic drugs for invasive fungal infections. However, azole-resistant strains appear repeatedly in the environment, posing a major threat to human health. Several reports have shown that mitochondria are associated with the virulence of pathogenic fungi. However, there are few studies on the mechanisms of mitochondria-mediated azoles resistance. Here, we first performed mitochondrial proteomic analysis on multiple Candida species (Candida albicans, Nakaseomyces glabrata, Pichia kudriavzevii, and Candida auris) and analyzed the differentially expressed mitochondrial proteins (DEMPs) between azole-sensitive and azole-resistant Candida species. Subsequently, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene ontology analysis, and protein-protein interaction network analysis of DEMPs. Our results showed that a total of 417, 165, and 25 DEMPs were identified in resistant C. albicans, N. glabrata, and C. auris, respectively. These DEMPs were enriched in ribosomal biogenesis at cytosol and mitochondria, tricarboxylic acid cycle, glycolysis, transporters, ergosterol, and cell wall mannan biosynthesis. The high activations of these cellular activities, found in C. albicans and C. auris (at low scale), were mostly opposite to those observed in two fermenter species-N. glabrata and P. kudriavzevii. Several transcription factors including Rtg3 were highly produced in resistant C. albicans that experienced a complex I activation of mitochondrial electron transport chain (ETC). The reduction of mitochondrial-related activities and complex IV/V of ETC in N. glabrata and P. kudriavzevii was companying with the reduced proteins of Tor1, Hog1, and Snf1/Snf4.IMPORTANCECandida spp. are common organisms that cause a variety of invasive diseases. However, Candida spp. are resistant to azoles, which hinders antifungal therapy. Exploring the drug-resistance mechanism of pathogenic Candida spp. will help improve the prevention and control strategy and discover new targets. Mitochondria, as an important organelle in eukaryotic cells, are closely related to a variety of cellular activities. However, the role of mitochondrial proteins in mediating azole resistance in Candida spp. has not been elucidated. Here, we analyzed the mitochondrial proteins and signaling pathways that mediate azole resistance in Candida spp. to provide ideas and references for solving the problem of azole resistance. Our work may offer new insights into the connection between mitochondria and azoles resistance in pathogenic fungi and highlight the potential clinical value of mitochondrial proteins in the treatment of invasive fungal infections.


Assuntos
Candida , Infecções Fúngicas Invasivas , Humanos , Candida/genética , Candida/metabolismo , Azóis/farmacologia , Azóis/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Proteômica , Farmacorresistência Fúngica/genética , Candida albicans/metabolismo , Transdução de Sinais , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/farmacologia , Testes de Sensibilidade Microbiana
6.
mBio ; 15(3): e0340923, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349176

RESUMO

Candida albicans can cause mucosal infections in humans. This includes oropharyngeal candidiasis, which is commonly observed in human immunodeficiency virus infected patients, and vulvovaginal candidiasis (VVC), which is the most frequent manifestation of candidiasis. Epithelial cell invasion by C. albicans hyphae is accompanied by the secretion of candidalysin, a peptide toxin that causes epithelial cell cytotoxicity. During vaginal infections, candidalysin-driven tissue damage triggers epithelial signaling pathways, leading to hyperinflammatory responses and immunopathology, a hallmark of VVC. Therefore, we proposed blocking candidalysin activity using nanobodies to reduce epithelial damage and inflammation as a therapeutic strategy for VVC. Anti-candidalysin nanobodies were confirmed to localize around epithelial-invading C. albicans hyphae, even within the invasion pocket where candidalysin is secreted. The nanobodies reduced candidalysin-induced damage to epithelial cells and downstream proinflammatory responses. Accordingly, the nanobodies also decreased neutrophil activation and recruitment. In silico mathematical modeling enabled the quantification of epithelial damage caused by candidalysin under various nanobody dosing strategies. Thus, nanobody-mediated neutralization of candidalysin offers a novel therapeutic approach to block immunopathogenic events during VVC and alleviate symptoms.IMPORTANCEWorldwide, vaginal infections caused by Candida albicans (VVC) annually affect millions of women, with symptoms significantly impacting quality of life. Current treatments are based on anti-fungals and probiotics that target the fungus. However, in some cases, infections are recurrent, called recurrent VVC, which often fails to respond to treatment. Vaginal mucosal tissue damage caused by the C. albicans peptide toxin candidalysin is a key driver in the induction of hyperinflammatory responses that fail to clear the infection and contribute to immunopathology and disease severity. In this pre-clinical evaluation, we show that nanobody-mediated candidalysin neutralization reduces tissue damage and thereby limits inflammation. Implementation of candidalysin-neutralizing nanobodies may prove an attractive strategy to alleviate symptoms in complicated VVC cases.


Assuntos
Candidíase Vulvovaginal , Candidíase , Proteínas Fúngicas , Anticorpos de Domínio Único , Humanos , Feminino , Candidíase Vulvovaginal/microbiologia , Qualidade de Vida , Anticorpos de Domínio Único/metabolismo , Candida albicans/metabolismo , Candidíase/microbiologia , Inflamação
7.
mSphere ; 9(3): e0069623, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38376217

RESUMO

Fungal infections cause a large health burden but are treated by only a handful of antifungal drug classes. Chromatin factors have emerged as possible targets for new antifungals. These targets include the reader proteins, which interact with posttranslationally modified histones to influence DNA transcription and repair. The YEATS domain is one such reader recognizing both crotonylated and acetylated histones. Here, we performed a detailed structure/function analysis of the Candida albicans YEATS domain reader Yaf9, a subunit of the NuA4 histone acetyltransferase and the SWR1 chromatin remodeling complex. We have previously demonstrated that the homozygous deletion mutant yaf9Δ/Δ displays growth defects and is avirulent in mice. Here we show that a YEATS domain mutant expected to inactivate Yaf9's chromatin binding does not display strong phenotypes in vitro, nor during infection of immune cells or in a mouse systemic infection model, with only a minor virulence reduction in vivo. In contrast to the YEATS domain mutation, deletion of the C-terminal domain of Yaf9, a protein-protein interaction module necessary for its interactions with SWR1 and NuA4, phenocopies the null mutant. This shows that the C-terminal domain is essential for Yaf9 roles in vitro and in vivo, including C. albicans virulence. Our study informs on the strategies for therapeutic targeting of Yaf9, showing that approaches taken for the mammalian YEATS domains by disrupting their chromatin binding might not be effective in C. albicans, and provides a foundation for studying YEATS proteins in human fungal pathogens.IMPORTANCEThe scarcity of available antifungal drugs and rising resistance demand the development of therapies with new modes of action. In this context, chromatin regulation may be a target for novel antifungal therapeutics. To realize this potential, we must better understand the roles of chromatin regulators in fungal pathogens. Toward this goal, here, we studied the YEATS domain chromatin reader Yaf9 in Candida albicans. Yaf9 uses the YEATS domain for chromatin binding and a C-terminal domain to interact with chromatin remodeling complexes. By constructing mutants in these domains and characterizing their phenotypes, our data indicate that the Yaf9 YEATS domain might not be a suitable therapeutic drug target. Instead, the Yaf9 C-terminal domain is critical for C. albicans virulence. Collectively, our study informs how a class of chromatin regulators performs their cellular and pathogenesis roles in C. albicans and reveals strategies to inhibit them.


Assuntos
Cromatina , Proteínas de Saccharomyces cerevisiae , Humanos , Animais , Camundongos , Cromatina/genética , Histonas/genética , Candida albicans/genética , Candida albicans/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Antifúngicos , Homozigoto , Deleção de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Domínios e Motivos de Interação entre Proteínas , Mamíferos
8.
Nat Microbiol ; 9(3): 669-683, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388771

RESUMO

The opportunistic fungal pathogen Candida albicans damages host cells via its peptide toxin, candidalysin. Before secretion, candidalysin is embedded in a precursor protein, Ece1, which consists of a signal peptide, the precursor of candidalysin and seven non-candidalysin Ece1 peptides (NCEPs), and is found to be conserved in clinical isolates. Here we show that the Ece1 polyprotein does not resemble the usual precursor structure of peptide toxins. C. albicans cells are not susceptible to their own toxin, and single NCEPs adjacent to candidalysin are sufficient to prevent host cell toxicity. Using a series of Ece1 mutants, mass spectrometry and anti-candidalysin nanobodies, we show that NCEPs play a role in intracellular Ece1 folding and candidalysin secretion. Removal of single NCEPs or modifications of peptide sequences cause an unfolded protein response (UPR), which in turn inhibits hypha formation and pathogenicity in vitro. Our data indicate that the Ece1 precursor is not required to block premature pore-forming toxicity, but rather to prevent intracellular auto-aggregation of candidalysin sequences.


Assuntos
Proteínas Fúngicas , Micotoxinas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Candida albicans/metabolismo , Micotoxinas/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo
9.
Nat Commun ; 15(1): 1757, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413612

RESUMO

Candidalysin, a cytolytic peptide toxin secreted by the human fungal pathogen Candida albicans, is critical for fungal pathogenesis. Yet, its intracellular targets have not been extensively mapped. Here, we performed a high-throughput enhanced yeast two-hybrid (HT-eY2H) screen to map the interactome of all eight Ece1 peptides with their direct human protein targets and identified a list of potential interacting proteins, some of which were shared between the peptides. CCNH, a regulatory subunit of the CDK-activating kinase (CAK) complex involved in DNA damage repair, was identified as one of the host targets of candidalysin. Mechanistic studies revealed that candidalysin triggers a significantly increased double-strand DNA breaks (DSBs), as evidenced by the formation of γ-H2AX foci and colocalization of CCNH and γ-H2AX. Importantly, candidalysin binds directly to CCNH to activate CAK to inhibit DNA damage repair pathway. Loss of CCNH alleviates DSBs formation under candidalysin treatment. Depletion of candidalysin-encoding gene fails to induce DSBs and stimulates CCNH upregulation in a murine model of oropharyngeal candidiasis. Collectively, our study reveals that a secreted fungal toxin acts to hijack the canonical DNA damage repair pathway by targeting CCNH and to promote fungal infection.


Assuntos
Candida albicans , Proteínas Fúngicas , Humanos , Camundongos , Animais , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Candida albicans/metabolismo , Peptídeos/metabolismo
10.
Mol Microbiol ; 121(2): 275-290, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167837

RESUMO

Candida albicans, an opportunistic fungal pathogen, is able to switch between two distinct cell types: white and opaque. While white-to-opaque switching is typically repressed by the a1/α2 heterodimer in MTLa/α cells, it was recently reported that switching can also occur in some natural MTLa/α strains under certain environmental conditions. However, the regulatory program governing white-opaque switching in MTLa/α cells is not fully understood. Here, we collected 90 clinical isolates of C. albicans, 16 of which possess the ability to form opaque colonies. Among the known regulators implicated in white-opaque switching, only OFI1 exhibited significantly higher expression in these 16 strains compared to the reference strain SC5314. Importantly, ectopic expression of OFI1 in both clinical isolates and laboratory strains promoted switching frequency even in the absence of N-acetylglucosamine and high CO2 , the optimal condition for white-to-opaque switching in MTLa/α strains. Deleting OFI1 resulted in a reduction in opaque-formation frequency and the stability of the opaque cell in MTLa/α cells. Ofi1 binds to the promoters of WOR1 and WOR3 to induce their expression, which facilitates white-to-opaque switching. Ofi1 is conserved across the CTG species. Altogether, our study reported the identification of a transcription factor Ofi1 as the critical regulator that promotes white-to-opaque switching in natural MTLa/α isolates of C. albicans.


Assuntos
Candida albicans , Fatores de Transcrição , Candida albicans/genética , Candida albicans/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas/genética , Fenótipo
11.
mBio ; 15(2): e0189823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38259065

RESUMO

Microbial species capable of co-existing with healthy individuals, such as the commensal fungus Candida albicans, exploit multifarious strategies to evade our immune defenses. These strategies include the masking of immunoinflammatory pathogen-associated molecular patterns (PAMPs) at their cell surface. We reported previously that C. albicans actively reduces the exposure of the proinflammatory PAMP, ß-1,3-glucan, at its cell surface in response to host-related signals such as lactate and hypoxia. Here, we show that clinical isolates of C. albicans display phenotypic variability with respect to their lactate- and hypoxia-induced ß-1,3-glucan masking. We have exploited this variability to identify responsive and non-responsive clinical isolates. We then performed RNA sequencing on these isolates to reveal genes whose expression patterns suggested potential association with lactate- or hypoxia-induced ß-1,3-glucan masking. The deletion of two such genes attenuated masking: PHO84 and NCE103. We examined NCE103-related signaling further because NCE103 has been shown previously to encode carbonic anhydrase, which promotes adenylyl cyclase-protein kinase A (PKA) signaling at low CO2 levels. We show that while CO2 does not trigger ß-1,3-glucan masking in C. albicans, the Sch9-Rca1-Nce103 signaling module strongly influences ß-1,3-glucan exposure in response to hypoxia and lactate. In addition to identifying a new regulatory module that controls PAMP exposure in C. albicans, our data imply that this module is important for PKA signaling in response to environmental inputs other than CO2.IMPORTANCEOur innate immune defenses have evolved to protect us against microbial infection in part via receptor-mediated detection of "pathogen-associated molecular patterns" (PAMPs) expressed by invading microbes, which then triggers their immune clearance. Despite this surveillance, many microbial species are able to colonize healthy, immune-competent individuals, without causing infection. To do so, these microbes must evade immunity. The commensal fungus Candida albicans exploits a variety of strategies to evade immunity, one of which involves reducing the exposure of a proinflammatory PAMP (ß-1,3-glucan) at its cell surface. Most of the ß-1,3-glucan is located in the inner layer of the C. albicans cell wall, hidden by an outer layer of mannan fibrils. Nevertheless, some ß-1,3-glucan can become exposed at the fungal cell surface. However, in response to certain specific host signals, such as lactate or hypoxia, C. albicans activates an anticipatory protective response that decreases ß-1,3-glucan exposure, thereby reducing the susceptibility of the fungus to impending innate immune attack. Here, we exploited the natural phenotypic variability of C. albicans clinical isolates to identify strains that do not display the response to ß-1,3-glucan masking signals observed for the reference isolate, SC5314. Then, using genome-wide transcriptional profiling, we compared these non-responsive isolates with responsive controls to identify genes potentially involved in ß-1,3-glucan masking. Mutational analysis of these genes revealed that a sensing module that was previously associated with CO2 sensing also modulates ß-1,3-glucan exposure in response to hypoxia and lactate in this major fungal pathogen of humans.


Assuntos
Candida albicans , Glucanos , beta-Glucanas , Humanos , Candida albicans/metabolismo , Glucanos/metabolismo , Dióxido de Carbono/metabolismo , Moléculas com Motivos Associados a Patógenos , Hipóxia/metabolismo , Lactatos/metabolismo , Parede Celular/metabolismo
12.
Cells ; 13(2)2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38247818

RESUMO

Candida albicans is an opportunistic pathogenic yeast that can survive in both normoxic and hypoxic environments. The involvement of C. albicans secretome on host biological processes has been demonstrated. However, the immunoregulatory function of C. albicans secretome released under hypoxic condition remains unclear. This study demonstrated the differences in cytokine responses and protein profiles between secretomes prepared under normoxic and hypoxic conditions. Furthermore, the immunoregulatory effects of heat shock protein SSA1(Ssa1), a protein candidate enriched in the hypoxic secretome, were investigated. Stimulation of mouse bone marrow-derived macrophages (BMMs) with Ssa1 resulted in the significant production of interleukin (IL)-10, IL-6, and tumor necrosis factor (TNF)-α as well as the significant expression of M2b macrophage markers (CD86, CD274 and tumor necrosis factor superfamily member 14), suggesting that C. albicans Ssa1 may promote macrophage polarization towards an M2b-like phenotype. Proteomic analysis of Ssa1-treated BMMs also revealed that Ssa1 reduced inflammation-related factors (IL-18-binding protein, IL-1 receptor antagonist protein, OX-2 membrane glycoprotein and cis-aconitate decarboxylase) and enhanced the proteins involved in anti-inflammatory response (CMRF35-like molecule 3 and macrophage colony-stimulating factor 1 receptor). Based on these results, we investigated the effect of Ssa1 on C. albicans infection and showed that Ssa1 inhibited the uptake of C. albicans by BMMs. Taken together, our results suggest that C. albicans alters its secretome, particularly by promoting the release of Ssa1, to modulate host immune response and survive under hypoxic conditions.


Assuntos
Candida albicans , Proteínas de Choque Térmico , Macrófagos , Animais , Camundongos , Candida albicans/metabolismo , Candida albicans/fisiologia , Proteínas de Choque Térmico/metabolismo , Hipóxia , Proteômica , Secretoma , Fatores de Necrose Tumoral , Interações Hospedeiro-Parasita , Macrófagos/imunologia , Macrófagos/metabolismo
13.
Mol Microbiol ; 121(4): 696-716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38178569

RESUMO

Candida albicans has the capacity to neutralize acidic growth environments by releasing ammonia derived from the catabolism of amino acids. The molecular components underlying alkalization and its physiological significance remain poorly understood. Here, we present an integrative model with the cytosolic NAD+-dependent glutamate dehydrogenase (Gdh2) as the principal ammonia-generating component. We show that alkalization is dependent on the SPS-sensor-regulated transcription factor STP2 and the proline-responsive activator Put3. These factors function in parallel to derepress GDH2 and the two proline catabolic enzymes PUT1 and PUT2. Consistently, a double mutant lacking STP2 and PUT3 exhibits a severe alkalization defect that nearly phenocopies that of a gdh2-/- strain. Alkalization is dependent on mitochondrial activity and in wild-type cells occurs as long as the conditions permit respiratory growth. Strikingly, Gdh2 levels decrease and cells transiently extrude glutamate as the environment becomes more alkaline. Together, these processes constitute a rudimentary regulatory system that counters and limits the negative effects associated with ammonia generation. These findings align with Gdh2 being dispensable for virulence, and based on a whole human blood virulence assay, the same is true for C. glabrata and C. auris. Using a transwell co-culture system, we observed that the growth and proliferation of Lactobacillus crispatus, a common component of the acidic vaginal microenvironment and a potent antagonist of C. albicans, is unaffected by fungal-induced alkalization. Consequently, although Candida spp. can alkalinize their growth environments, other fungal-associated processes are more critical in promoting dysbiosis and virulent fungal growth.


Assuntos
Aminoácidos , Candida albicans , Feminino , Humanos , Candida albicans/metabolismo , Aminoácidos/metabolismo , Amônia/metabolismo , Candida/metabolismo , Prolina/metabolismo , Candida glabrata/metabolismo
14.
J Inorg Biochem ; 253: 112476, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38171045

RESUMO

The fungal cell wall and cell membrane are an important target for antifungal therapies, and a needle-like cell wall or membrane disruption may be an entirely novel antifungal mode of action. In this work, we show how the coordination of Zn(II) triggers the antifungal properties of shepherin II, a glycine- and histidine-rich antimicrobial peptide from the root of Capsella bursa-pastoris. We analyze Cu(II) and Zn(II) complexes of this peptide using experimental and theoretical methods, such as: mass spectrometry, potentiometry, UV-Vis and CD spectroscopies, AFM imaging, biological activity tests and DFT calculations in order to understand the correlation between their metal binding mode, structure, morphology and biological activity. We observe that Zn(II) coordinates to Shep II and causes a structural change, resulting in fibril formation, what has a pronounced biological consequence - a strong anticandidal activity. This phenomenon was observed neither for the peptide itself, nor for its copper(II) complex. The Zn(II) - shepherin II complex can be considered as a starting point for further anticandidal drug discovery, which is extremely important in the era of increasing antifungal drug resistance.


Assuntos
Candida albicans , Complexos de Coordenação , Candida albicans/metabolismo , Antifúngicos/química , Química Bioinorgânica , Zinco/química , Peptídeos/química , Cobre/química , Complexos de Coordenação/química
15.
Biotechnol J ; 19(1): e2300219, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37876300

RESUMO

Chitinases are widely studied enzymes that have already found widespread application. Their continued development and valorisation will be driven by the identification of new and improved variants and/or novel applications bringing benefits to industry and society. We previously identified a novel application for chitinases wherein the Candida albicans cell wall surface chitinase 3 (Cht3) was shown to have potential in vaccine applications as a subunit antigen against fungal infections. In the present study, this enzyme was investigated further, developing production and purification protocols, enriching our understanding of its properties, and advancing its application potential. Cht3 was heterologously expressed in Pichia pastoris and a 4-step purification protocol developed and optimised: this involves activated carbon treatment, hydrophobic interaction chromatography, ammonium sulphate precipitation, and gel filtration chromatography. The recombinant enzyme was shown to be mainly O-glycosylated and to retain the epitopes of the native protein. Functional studies showed it to be highly specific, displaying activity on chitin, chitosan, and chito-oligosaccharides larger than chitotriose only. Furthermore, it was shown to be a stable enzyme, exhibiting activity, and stability over broad pH and temperature ranges. This study represents an important step forward in our understanding of Cht3 and contributes to its development for application.


Assuntos
Quitinases , Quitosana , Candida albicans/genética , Candida albicans/metabolismo , Quitinases/genética , Quitinases/química , Proteínas , Quitina/química , Quitina/metabolismo , Concentração de Íons de Hidrogênio
16.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37889998

RESUMO

Tra1 is an essential coactivator protein of the yeast SAGA and NuA4 acetyltransferase complexes that regulate gene expression through multiple mechanisms including the acetylation of histone proteins. Tra1 is a pseudokinase of the PIKK family characterized by a C-terminal PI3K domain with no known kinase activity. However, mutations of specific arginine residues to glutamine in the PI3K domains (an allele termed tra1Q3) result in reduced growth and increased sensitivity to multiple stresses. In the opportunistic fungal pathogen Candida albicans, the tra1Q3 allele reduces pathogenicity and increases sensitivity to the echinocandin antifungal drug caspofungin, which disrupts the fungal cell wall. Here, we found that compromised Tra1 function, in contrast to what is seen with caspofungin, increases tolerance to the azole class of antifungal drugs, which inhibits ergosterol synthesis. In C. albicans, tra1Q3 increases the expression of genes linked to azole resistance, such as ERG11 and CDR1. CDR1 encodes a multidrug ABC transporter associated with efflux of multiple xenobiotics, including azoles. Consequently, cells carrying tra1Q3 show reduced intracellular accumulation of fluconazole. In contrast, a tra1Q3 Saccharomyces cerevisiae strain displayed opposite phenotypes: decreased tolerance to azole, decreased expression of the efflux pump PDR5, and increased intracellular accumulation of fluconazole. Therefore, our data provide evidence that Tra1 differentially regulates the antifungal response across yeast species.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Azóis/farmacologia , Azóis/metabolismo , Fluconazol/farmacologia , Fluconazol/metabolismo , Caspofungina , Filogenia , Candida albicans/genética , Candida albicans/metabolismo , Fosfatidilinositol 3-Quinases/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Histona Acetiltransferases/química
17.
Microbiol Spectr ; 12(1): e0168923, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38054721

RESUMO

IMPORTANCE: The fungal cell wall consists of glucans, mannoproteins, and chitin and is essential for cell viability, morphogenesis, and pathogenesis. The enzymes of the GH72 family are responsible for ß-(1,3)-glucan elongation and branching, which is crucial for the formation of the glucan-chitin polymer at the bud neck of yeast cells. In the human fungal pathogen Candida albicans, there are five GH72 enzyme-encoding genes: PHR1, PHR2, PHR3, PGA4, and PGA5. It is known that expression of PHR1 and PHR2 is controlled by the pH-responsive Rim101 pathway through the transcription factor Rim101. In this study, we have demonstrated that the transcription expression of PHR2 is also controlled by the transcription factor Crz1 through its binding motif in the promoter. Therefore, we have uncovered a dual-control mechanism by which PHR2 expression is negatively regulated via CaRim101 through the pH-responsive pathway and positively modulated by CaCrz1 through the calcium/calcineurin signaling pathway.


Assuntos
Proteínas Fúngicas , Fatores de Transcrição , Humanos , Proteínas Fúngicas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sinalização do Cálcio , Candida albicans/metabolismo , Glucanos/metabolismo , Quitina/metabolismo , Regulação Fúngica da Expressão Gênica
18.
Microb Pathog ; 186: 106462, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030019

RESUMO

To treat the systemic infections caused by Candida albicans (C. albicans), various drugs have been used, however, infections still persisted due to virulence factors and increasing antifungal resistance. As a solution to this problem, we synthesized selenium nanoparticles (SeNPs) by using Bacillus cereus bacteria. This is the first study to report a higher (70 %) reduction of selenite ions into SeNPs in under 6 h. The as-synthesized, biogenic SeNPs were used to deliver bioactive constituents of aqueous extract of ginger for inhibiting the growth and biofilm (virulence factors) in C. albicans. UV-visible spectroscopy revealed a characteristic absorption at 280 nm, and Raman spectroscopy showed a characteristic peak shift at 253 cm-1 for the biogenic SeNPs. The synthesized SeNPs are spherical with 240-250 nm in size as determined by electron microscopy. Fourier transform infrared spectroscopy confirmed the functionalization of antifungal constituents of ginger over the SeNPs (formation of Ginger@SeNPs nanoconjugates). In contrast to biogenic SeNPs, nanoconjugates were active against C. albicans for inhibiting growth and biofilm formation. In order to reveal antifungal mechanism of nanoconjugates', real-time polymerase chain reaction (RT-PCR) analysis was performed, according to RT-PCR analysis, the nanoconjugates target virulence genes involved in C. albicans hyphae and biofilm formation. Nanoconjugates inhibited 25 % growth of human embryonic kidney (HEK) 293 cell line, indicating moderate cytotoxicity of active nanoconjugates in an in-vitro cytotoxicity study. Therefore, biogenic SeNPs conjugated with ginger dietary extract may be a potential antifungal agent and drug carrier for inhibiting C. albicans growth and biofilm formation.


Assuntos
Bacillus , Nanopartículas , Selênio , Humanos , Selênio/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Candida albicans/metabolismo , Fatores de Virulência , Nanoconjugados , Células HEK293 , Nanopartículas/química , Bacillus/metabolismo , Biofilmes
19.
J Biol Chem ; 300(1): 105543, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072057

RESUMO

Candida albicans is a commensal fungus, opportunistic pathogen, and the most common cause of fungal infection in humans. The biosynthesis of phosphatidylcholine (PC), a major eukaryotic glycerophospholipid, occurs through two primary pathways. In Saccharomyces cerevisiae and some plants, a third PC synthesis pathway, the PC deacylation/reacylation pathway (PC-DRP), has been characterized. PC-DRP begins with the acylation of the lipid turnover product, glycerophosphocholine (GPC), by the GPC acyltransferase, Gpc1, to form Lyso-PC. Lyso-PC is then acylated by lysolipid acyltransferase, Lpt1, to produce PC. Importantly, GPC, the substrate for Gpc1, is a ubiquitous metabolite available within the host. GPC is imported by C. albicans, and deletion of the major GPC transporter, Git3, leads to decreased virulence in a murine model. Here we report that GPC can be directly acylated in C. albicans by the protein product of orf19.988, a homolog of ScGpc1. Through lipidomic studies, we show loss of Gpc1 leads to a decrease in PC levels. This decrease occurs in the absence of exogenous GPC, indicating that the impact on PC levels may be greater in the human host where GPC is available. A gpc1Δ/Δ strain exhibits several sensitivities to antifungals that target lipid metabolism. Furthermore, loss of Gpc1 results in both a hyphal growth defect in embedded conditions and a decrease in long-term cell viability. These results demonstrate for the first time the importance of Gpc1 and this alternative PC biosynthesis route (PC-DRP) to the physiology of a pathogenic fungus.


Assuntos
Aciltransferases , Animais , Humanos , Camundongos , Aciltransferases/genética , Aciltransferases/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Glicerilfosforilcolina/metabolismo , Fosfatidilcolinas/metabolismo
20.
Metallomics ; 15(12)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38061812

RESUMO

Histatin-5 (Hist-5) is an antimicrobial peptide found in human saliva that functions to defend the oral cavity from microbial infections, such as those caused by the fungal pathogen Candida albicans (C. albicans). Hist-5 can bind Cu in multiple oxidation states, Cu2+ and Cu+in vitro, and supplemental Cu2+ has been shown to improve the fungicidal activity of the peptide against C. albicans in culture. However, the exact role of Cu on the antifungal activity of Hist-5 and whether direct peptide-Cu interactions occur intracellularly has yet to be fully determined. Here, we used a combination of fluorescence spectroscopy and confocal microscopy experiments to show reversible Cu-dependent quenching of a fluorescent Hist-5 analogue, Hist-5*, indicating a direct interaction between Hist-5 and intracellular Cu. X-ray fluorescence microscopy images revealed peptide-induced changes to cellular Cu distribution and cell-associated Cu content. These data support a model in which Hist-5 can facilitate the hyperaccumulation of Cu in C. albicans and directly interact with Cu intracellularly to increase the fungicidal activity of Hist-5.


Assuntos
Antifúngicos , Candida albicans , Humanos , Antifúngicos/farmacologia , Antifúngicos/química , Candida albicans/metabolismo , Histatinas/farmacologia , Histatinas/metabolismo , Cobre/metabolismo , Microscopia Confocal , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...